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ABSTRACT 

This paper is the second in a series by the authors concerned with the 
theory of viscosity solutions Hamilton-Jacobi equations in infinite 
dimensional spaces.  The first paper introduced a notion of viscosity solution 
appropriate for the study of Hamilton-Jacobi equations in spaces with the so- 
called Radon-Nikodym property and obtained uniqueness theorems under 
assumptions paralleling the finite dimensional theory.  The main results of 
the current paper concern existence of solutions of stationary and time- 
dependent Hamilton-Jacobi equations.  In order to establish these results it 
is necessary to overcome the difficulties associated with the fact that 
bounded sets are not precompact in infinite dimensions and this is done by 
sharp constructive estimates coupled with the use of differential yames to 
solve regularized problems. 

Interest in this subject arises on the abstract side from the desire to 
contribute to the theory of partial differential equations in infinite 
dimensional spaces to treat natural questions raised by the finite dimensional 
theory.  Interest also arises from potential applications to the theory of 
control of partial differential equations.  However, the results herein do not 
apply directly to problems of the form arising in the control of partial 
differential equations, a question which will be treated in the next paper of 
the series. 
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HAMILTON-JACOB I EQUATIONS IN INFINITE DIMENSIONS, PART II. 

EXISTENCE OF VISCOSITY SOLUTIONS 

Michael G. Crandall and Pierre-Louis Lions 

Introduction: 

This is the second paper of a series devoted to the study of Hamilton-Jacobi 

equations in infinite dimensions.  Part I ([10]) was concerned with the uniqueness of 

viscosity solutions of general first order equations of the form 

(HJ) F(x,u,Du) « 0 in ft 

in which ft is an open subset of some (real) Banach space V, the unknown function 

u:fl * R is continuous and Du(x) denotes the Fr£chet derivative of u at x; thus Du(x) t V 

where V is the dual of V.  The nonlinear function F defining the equation is a continuous 

mapping F:ft x R x v  • R.  The notion of a viscosity solution for (HJ) considered in [10] 

is a straighforward adaptation of the notion of a viscosity solution first used in 

obtaining existence and uniqueness results in the finite dimensional case (i.e., V • R°) 

in M. G. Crandall and P. L. Lions [7] (see also M. G. Crandall, P. L. Lions and L.   C. 

Evans [5]).  One of the equivalent forms of this notion is recalled in Section 1 below. 

Here we prove general existence results for two typical problems, namely, the Cauchy 

problem 

(CP) ut + H(x,t,u,Du) • 0 in V x ]0,T[, 

u(x,0) •« (p(x) in V 

and the stationary problem 

(SP) u + H(x,u,Du) - 0 in V 

where the functions H and <p are given and satisfy conditions detailed in Section 1.  In 
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either case we call H the "Hamiltonian".  Here the Du in (CP) denotes the derivative of 

the map x • u(x,t); i.e., D is the gradient in the "space variable" x.  The equation in 

(CP) is regarded as a special case of (HJ) by regarding the pair (x,t) in (CP) as x in 

(HJ) and V x R as V. 

The existence results established here are precisely formulated in Section 1. 

It is quite striking that these results are obtained under much the same assumptions used 

to obtain the corresponding results in the finite dimensional case in H. Ishii [16], [17] 

and M. G. Crandall and P. L. Lions [9].  (See [3], [7], [18], [19], [21] for earlier 

existence results.) However, even though the finite and infinite dimensional theories have 

similar formulations, the proofs must be modified substantially in the infinite 

dimensional case. 

There are three main difficulties in the passage from finite to infinite 

dimensions.  First, the finite dimensional theory relies everywhere on the fact that 

continuous functions on closed and bounded sets attain maximum and minimum values, and 

this is false in infinite dimensions. A way to deal with this in infinite dimensions was 

demonstrated in [10] in the course of proving uniqueness. Next, in finite dimensions the 

method of vanishing viscosity can be used to solve (CP) or (SP) in a simple way if the 

data H and if  are "nice". That is, a term -cA is added to the equations, the resulting 

problem is solved and then c is sent to zero using a priori estimates, the Arzela-Ascoli 

(or AA) theorem and properties of viscosity solutions to pass to a limit.  Having obtained 

existence for a restricted class of H and tp, a priori estimates and the AA theorem are 

used again to obtain solutions for H and if of the generality desired.  In infinite 

dimensions we have neither the A nor the AA theorem available to us.  This first 

difficulty is circumvented by the use of explicit formulas from the theory of differential 

games.  We obtain solutions for a restricted class of Hamiltonians by forming ad hoc 

differential games (following the finite dimensional discussion in L. C. Evans and P. E. 

Souganidi8 [14]) whose value functions are shown to provide the desired solutions.  Next, 

to deal with less regular Hamiltonians by limiting arguments in the absence of the AA 

,-. v. --. • 
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SECTION 1. PRELIMINARIES AND STATEMENTS OF RESULTS 

In all that follows, unless otherwise stated, V is a real Banach space with the 

Radon-Nikodym property (or "V Is RN"), V Is its dual space and fl is an open subset of 

V.  We will use the same notation | | for the norm of V, the dual norm on V and the 

absolute value on R.  The value of p (. V at x (. V will be written (p,x). 

There are many equivalent ways to say that V has the Radon-Nikodym property - see, 

for example, [4].  We will use the following form: V is RN if and only if whenever q> is a 

continuous mapping of a closed ball B in V into R which is bounded below (above) and 

e > 0, then there is an element x of V such that |x | < e and <p + x attains its minimum 

(respectively, maximum) value over B. 

Both (SP) and (CP) may be regarded as equations of the general form H(x,u,Du) - 0 by 

using V x R in place of V in the case of (CP).  Let H i  C(V « R x v ).  The notion of 

viscosity sub- and supersolutions of an equation H « 0 in a set ft were defined in [10]• 

One of the equivalent forms of this definition is: 

Definition 1.1. Let u € C(£l).  Then u is a viscosity subsolution H » 0 in (I  if 

(1.1) Whenever (p € C(JJ), y i 0,   <p is diff erentiable at y and u - ip has a local maximum 

at y, then H(y,u(y),Dip(y)) < 0. 

Similarly, u is a viscosity supersolution of H = 0 in Q  if 

(1.2) Whenever <p i  C(ß), y t  Si,   <p is diff erentiable at y and u - ip has a local minimum 

at y, then H(y,u(y) ,Dip(y)) > 0. 

Finally, u is a viscosity solution of H - 0 if it is both a viscosity subsolution and a 

viscosity supersolution. 

We will also refer to a viscosity subsolution of H » 0 as a viscosity solution of 

H i   0, etc.  We next formulate conditions on the Hamiltonians H in (SP) and (CP) which 

will be among the hypotheses under which we will prove the existence of solutions.  These 

conditions will involve two auxiliary functions v:V + [0,») and d:V x v + [0,») which are 

required to satisfy the following conditions (C): 
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(C)     For every y t V the nonnegative function x • d(x,y) is Kröchet 

differentiable at every point except y and the derivative is denoted 

by d (x,y).  Similarly, y + d(x,y) is differentiable except at x and 

its derivative is d(x,y).  The function v is nonnegative and 

differentiable everywhere.  Moreover, there is a constant K > 0 such that 

(1.3) |dx(x,y)|, |dy(x,y)|, |DV(X)| < K 

whenever the quantities on the left are defined, 

v(x) 
(1.4) lim inf  i i  > 1, 

|x|~  |x| 

and 

(1.5) |x - y| < d(x,y) < K|X - y| for x, y t V. 

We continue.  A function m: [0,"») • [0,») will be called a modulus if it is 

continuous, nondecreasing, nonnegative, subadditive and satisfies m(0) • 0.  We will use 

m, nw,, etc., to denote such functions.  We will also say that a function 

o:[0,») x [0,») * [0,») is a local modulus if r • o(r,R) is a modulus for each R > 0 and 

o(r,R) is continuous and nondecreasing in both variables.  We next formulate conditions on 

the Hamiltonian H:V x [0,T] x R x v • R in (CP).  These conditions are interpreted in the 

obvious way for time independent Hamiltonians H:V x R x V  • R as in (SP).  Throughout the 

statements it is assumed that conditions (C) hold and d, v are the functions in (C).  We 

also let BR(x) = [z   i  V: |z - x| < R } be the closed ball centered at x of radius R in V, 

BR(p) be the ball of radius R in V centered at p € V and B • B (0), BR(0) = BR. 

(HO)    There is a local modulus on such that 

|H(x,t,r,p) - H(y,s,v,q)| < oQ(|x - y|+|t - s| + |r - v| + |p - q|,R) 

for R > 0, x, y i  BR t, s i   [0,T], |r|, |v| < R and p, q i  B*. 

(H1)    For each (x,t,p) € V x [0,T] x v the map r • H(x,t,r,p) is nondecreasing. 
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SECTION 1. PRELIMINARIES AND STATEMENTS OF RESULTS 

In all that follows, unless otherwise stated, V is a real Banach space with the 

* 
Radon-Nikodym property (or "V is RN"), V is its dual space and il  is an open subset of 

V.  We will use the same notation [ | for the norm of V, the dual norm on V and the 

absolute value on R.  The value of p ( V at x € V will be written (p,x). 

There are many equivalent ways to say that V has the Radon-Nikodym property - see, 

for example, [4].  We will use the following form: V is RN if and only if whenever f is a 

continuous mapping of a closed ball B in V into R which is bounded below (above) and 

e > 0, then there is an element x of V such that |x | < e and <p + x attains its minimum 

(respectively, maximum) value over B. 

Both (SP) and (CP) may be regarded as equations of the general form H(x,u,Du) = 0 by 

using V x R in place of V in the case of (CP).  Let HtC(VxRxV).  The notion of 

viscosity sub- and supersolutions of an equation H = 0 in a set Ü  were defined in [10]- 

One of the equivalent forms of this definition is: 

Definition 1.1. Let u ( C(Q).  Then u is a viscosity subsolution H = 0 in il if 

(1.1) Whenever <p € C( il), y i  il,   f>  is dif f erentiable at y and u - <j> has a local maximum 

at y, then H(y,u(y),Dcp(y) ) < 0. 

Similarly, u is a viscosity supersolution of H = 0 in il  if 

(1.2) Whenever cp € C(fl), y t il,   if is differentiable at y and u - <p has a local minimum 

at y, then H(y,u(y) ,Dcp(y) ) > 0. 

Finally, u is a viscosity solution of H = 0 if it is both a viscosity subsolution and a 

viscosity supersolution. 

We will also refer to a viscosity subsolution of H = 0 as a viscosity solution of 

H < 0, etc.  We next formulate conditions on the Hamiltonians H in (SP) and (CP) which 

will be among the hypotheses under which we will prove the existence of solutions.  These 

conditions will involve two auxiliary functions v:V • [0,») and d:V x v • [0,») which are 

required to satisfy the following conditions (C): 
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(C)     For every y £ V the nonnegative function x • d(x,y) is Fröchet 

differentiable at every point except y and the derivative is denoted 

by d (x,y).  Similarly, y • d(x,y) is differentiable except at x and 

its derivative is d^(x,y).  The function v is nonnegative and 

differentiable everywhere.  Moreover, there is a constant K > 0 such that 

(1.3) |dx(x,y)|, |dy(x,y)|, |Dv(x)| <K 

whenever the quantities on the left are defined, 

(1.4) lim inf -TIT- > 1« 
|x|~  W 

and 

(1.5) |x - y| < d(x,y) < K|x - y| for x, y t V. 

We continue.  A function m:[0,») + [0,») will be called a modulus if it is 

continuous, nondecreasing, nonnegative, subadditive and satisfies m(0) • 0.  We will use 

m, OL., etc., to denote such functions.  We will also say that a function 

o:[0,«°) x [0,») * [0,=>) is a local modulus if r + ö(r,R) is a modulus for each R > 0 and 

o(r,R) is continuous and nondecreasing in both variables.  We next formulate conditions on 

the Hamiltonian H:V x [0,T] x R x v • R in (CP).  These conditions are interpreted in the 

obvious way for time independent Hamiltonians H:V x R x v  * R as in (SP).  Throughout the 

statements it is assumed that conditions (C) hold and d, v are the functions in (C).  We 

also let BR(x) = {z (. V: | z - x| < R } be the closed ball centered at x of radius R in V, 

* * * *      * 
BR(p) be the ball of radius R in V centered at p i  V and B  • B (0), BR(0) = BR. 

(HO)    There is a local modulus o. such that 

|H(x,t,r,p) - H(y,s,v,q)| < on(|x - y|+|t - s|+|r - v|+|p - q|,R) 

for R > 0, x, y t  BR t, s i   [0,T], |r|, |v| < R and p, q ( B*. 

(H1)     For each (x,t,p) i  V x (0,T] x v the map r • H(x,t,r,p) is nondecreasing. 
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(H2)    There is a local modulus o such that 

H(x,t,r,p) - H(x,t,r,p + ADv(x)) < Og(X,|p] + X) 

whenever 0 <   A, (x,r,t,p) i  V x [0,T] x R x v . 

and 

(H3)    There is a modulus HL, such that 

H(y,t,r,-Xd (x,y)) - H(x,t,r,Xdx(x,y)) < n^fXdtx.y) + d(x,y)) 

for x, y f V with x /  y, t i  [0,T], r t  R and A > 0. 

The existence results will be proved for (CP) under (HO) - (H3).  For (SP), (H3) will need 

to be augmented and sometimes we will invoke the additional condition: 

(H4)    There is a function F:[0,«>) x [0,°°) * R nondecreasing in its arguments such that 

H(y,r.-Ad (x,y))-H(x,r,Xd (x,y)XF(X,d) for x,y(V,r«and A>0 
y x 

and a nonnegative nondecreasing uniformly continuous map G:[0,°°) • R which is 

continuously differentiable on (0,») and satisfies 

G(r) > F(G'(r),r) on r > 0. 

In order to appreciate the need for (H4) for (SP), as well as for further insight 

into the nature of the other conditions above, we invite the reader to refer ahead to 

Section 5 at this time and to see the discussion in [10, Remarks 2].  The reader will 

observe some differences in the formulations of (C) (in which, for example, a constant 

called k in [10] has been put equal to 1 here, as can be done without loss of generality) 

and (HO) - (H3) from the corresponding formulations in [10].  In particular, (HO) is 

stronger in several respects than its analogue due to the more stringent requirements of 

the existence theory.  We also recall that for (CP) (H1) can be weakened to the 

monotonicity of r + H(x,t,r,p) + Ar for some A € R by means of the change of variable 

u • e"Xtu. 

Finally we introduce various function classes.  If X is any metric space, the space 

of uniformly continuous real-valued functions on X is UC(X) and the subspace of bounded 
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functions in OC(X) is BUC(X).  The space UCg(V x [0,T]) consists of those functions 

u:V x [0,T] + R which are uniformly continuous in x uniformly in t and uniformly 

continuous on bounded sets.  This amounts to asking that there are a modulus m and a local 

modulus o such that 

|u(x,t) - u(y,s)| < m(|x - y|) + o(|t - s|,|y|). 

BUCg(V x [0,T]) is the subspace of UCS(V x [0,T]) consisting of bounded functions. 

Existence Theorem 1.1. 

(i)  Let (HO) - (H3) hold and ip £  UC(V).  Then there is a unique u i  UCg(V x [0,T]) which 

is a viscosity solution of u. + H(x,t,u,Du) = 0 on V x (0,T) and satisfies u(x,0) = <p(x). 

(ii)  Let (HO) - (H4) hold.  Then there is a unique viscosity solution u t  UC(V) of 

u + H(x,u,Du) = 0 on V. 

The program of proof of the existence theorem is quite long and involved and will 

occupy the next three sections.  There are infinitely many variants of this result and we 

discuss some of them in Section 5.  This section concludes with some results of general 

interest concerning viscosity solutions which will be used in various parts of the proof 

of the Existence Theorem.  In the statements of these results the reader should think of 

the equations H = 0, etc., which are involved as including both (SP) and (CP). 

In what follows we will assume the existence of a function N:V • [0,°°) with the 

following properties: 

(1.6)  The nonnegative function N is Lipschitz continuous on V and differentiable 

on v\{0}.  Moreover, N(0) = 0 and N(x) > |x| in some neighborhood 

of 0 in V. 

For example, if the conditions (C) hold, then N(x) • d(x,0) has the desired properties. 

In addition, if X is reflexive, then it has an equivalent norm which may serve as a 

function N satisfying (1.6).  When (1.6) holds, then the requirements defining viscosity 

sub- and supersolutions may be weakened without modifying the notion.  We formulate and 

prove a result to this effect (see also [10,Remarks 1]). 
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Proposition 1.2.  Let (1.6) hold.  Let u fe C(8)<  Then u is a viscosity solution of 

H < 0 (H >  0) in SI if and only if whenever <p t C([i) is everywhere differentlable, 

y 6 Ü  is a point of continuity of Dip and there is an r > 0 such that 

u(x) - <p(x) < u(y) - <p(y) - |x - y|  for |x - y| < r (respectively, 

u(y) - ip(y) < uCx) - <p(x) - |x - y|2 for |x - y| < r), then H(y,u(y) ,D(p(y) ) < 0 

(respectively, H(y,u(y) ,D'P(y) ) > 0). 

Sketch of Proof:  Assume that u satisfies the conditions the proposition asserts are 

equivalent to being a viscosity solution of H < 0, q> € C(8) and y f SI is both a local 

maximum point of u - ip and a point of differentiability of <p.  In order to deduce that 

H(y,u(y),Dip(y) ) < 0 we first remark that: 

Lemma 1.3.  Let (1.6) hoxd.  Let ip t C(fl) be differentiable at y ( ft.  Then there is a 

function 4> (.  C(S1) which is everywhere dif ferentiable on ft and an r > 0 such that 

i|»(y) = <P(y), Di|i(y) = Dip(y), Dty  is continuous at y and \|>(x) + |x - y|  < ip(x) for 

|x - y| < r. 

Proof of Lemma 1.3:  Set p = Dip(y).  By assumption and (1.6) there is a r > 0 and an 

h i  C(H) satisfying h(0) = h'(0) = 0 and 

ip(x) > <p(y) + (p,y - x) + h'N(x - y) ) for |x - y| < r. 

Lemma 1.4 of [7] (due to Evans) provides us with a continuously differentiable function g 

on R which satisfies g(0) = g'(0) = 0 and g(s) < h(s) for small s.  Clearly 

ip(x) = ip(y) + (p,y - x) + g(N(x - y)) - N(x - y)2 has the desired properties. 

End of proof of Proposition 1.2:  Since y is a maximum point of u - ip, if <p is related to 

<p as in the lemma, y is also a strict maximum point of u - I|I in the sense of the 

assumptions.  But then, by the assumption on u and the properties of if/, 

H(y,u(y) ,Dip(y)) • H(y ,u(y) ,Dip(y) ) < 0, completing the proof.  The case of supersolutions 

is treated in a parallel way. 

The next result presents a key stability property of viscosity solutions. 
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AB mentioned above, conditions much like (H0)-(H3) were introduced in [10] where the 

question of uniqueness was studied and some continuity of solutions with respect to the 

equations was proved.  We will in fact need to supplement these results of [10] somewhat 

to achieve full generality below.  This task is taken up in the next section. 

»11« 
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SECTION 2: CONVERGENCE THEOREMS AND MODULI OF CONTINUITY 

The results of this section, which are both technical and general, concern the 

continuity of solutions of Hamilton - Jacobi equations in the data of the problem.  These 

data are here taken to be the equation and, in the case of (CP), the initial-value. 

Results of this sort were given in [10], however they have proven to be inadequate for the 

full existence program treated in this paper.  Roughly speaking, the results of [10] were 

formulated to correspond to uniform estimates on all of V, while we will need to deal with 

estimates uniform on bounded sets, but not on V.  We will, however, make full use of the 

proofs in [10] by referring to them rather than repeating arguments when appropriate. 

This minimizes repetition and shortens the presentation. We ask the reader's forbearance 

as we launch ourselves into the discussion. 

We consider sequences of Cauchy problems 

(CP)n unt + Hn(x,t,un,Dun) - 0 in V x (0,T], 

un(x,0) = ipn(x) in V, 

and stationary problems 

(SP)„ un + Hn(x,un,Dun) = 0 in V 

indexed by n = 1, 2, 3, ... .  In each case the Hamiltonians will converge to a limit H in 

the sense that 

(2.1) lim H_(x,t,r,p) = H(x,t,r,p) uniformly 
n-w» 

on bounded subsets of V x [0,T] x R x v 

(interpreted in the obvious way if H is independent of t).  When a sequence of functions 

fn converges to a limit f uniformly on bounded subsets of its domain we will simply write 

fn * f UB, 

and say fn converges UB to f.  The point of the main convergence^ result is that if H  (and 

ifn for (SP)) converge UB to a limit H (and <p) which obeys (HO) - (H3) and we have some 

additional information like (but not exactly) a uniform modulus of continuity of the u_, 

then the un converge UB to a viscosity solution u of the limit problem.  The convergence 

theorem will be invoked later to assert that solutions of approximate problems converge to 

-12- 
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solutions of limit problems.  In order to verify the hypotheses in these applications, we 

will need to obtain something like uniform moduli of continuity.  Results in this 

direction are given in Theorems 2.2 and 2.3 below. 

Convergence Theorem 2.1.  Let H , n = 1,2,... be Hamiltonians which are uniformly 

continuous on bounded sets and satisfy (HO) and H be a Hamiltonian which satisfies (HO) - 

(H3).  Let H  converge UB to H. n 

(i)  Let un ( UCS(V x [0,T]) be a viscosity solution of (CP)n for n = 1,2,.. .  Assume 

that there are constants A and B such that 

(2.2) |un(x,t)| < A0 + BQv(x) for (x,t) i  V x [0,T] 

for n= 1,2,   Assume, moreover, that 

(2.3) lim lim sup sup ||u (x,t) - u (y,t)|: d(x,y) < r, 0 < t < T} = 0. 
• n n        n 

r+0  n-H» 

Then there is a u ( UCS(V x [0,T]) such that un * u UB. 

(ii)  Let the above assumptions hold.  Let u  C UC(V) be viscosity solutions of (SP)n for 

n = 1,2, ... , and (2.2) - (2.3) hold (where the u are now independent of t).  Then there 

exists a u i  UC(V) such that ufi * u UB. 

Of course, it follows from Theorem 1.4 that in both cases (i) and (ii) above u is a 

viscosity solution of the limiting problem.  Before beginning the proof of the Convergence 

Theorem w« will formulate two theorems which provide, by giving estimates on viscosity 

solutions and their moduli of continuity, a way to verify its hypotheses.  Later we will 

need to expand the range of application still further. 

The following "data" of (CP) or (SP) will be referred to in addition to the data in 

(C) and (HO) - (H4): A modulus mn such that 

(2.4) |cj>(x) - H'(y>| < mQ(d(x,y)) for x,y tV 

and positive constants A„, B , A», B. such that 

(2.5) |H(x,t,0,0)| < AH + BHv(x) for (x,t) I V x [0,T] 

and 

(2.6) |<|)(x)| <.  A0 + B0u(x), 

-13- 
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and the  function 

(2.7) bH(R)   = sup{|H(x,t,r,p)|:v(x),|p|,|r|< R and tfc[0,T] }. 

We begin with (CP) since the hypotheses needed for (SP) are more restrictive. 

Theorem 2.2. (i)  Let H in (CP) satisfy (H0)-(H3) and <p i  UC(V) satisfy (2.4) - (2.7). 

Let u i  OC (V x [0,T]) be a viscosity solution of (CP).  Then there are constants A, B 

depending on A., B_, AH, BH, o^ such that 

(2.8) |u(x,t)| < (A + Bv(x>), (x,t) t  V x [0,T], 

and a modulus m depending on m. and HL, such that 

(2.9) |u(x,t) - u(y,t)| < m(d(x,y)) for x, y i  V and t t [0,TJ. 

Moreover, there is a local modulus a depending on A, B in (2.8), m in (2.9), b„, v and d 
n 

such 

(2.10) |u(x,t) - u(x,s)| < o(|t - s|,|x|) for t,s d   [0,T]. 

(ii)  Let H in (SP) satisfy (HO) - (H4) and u £ UC(V) be a viscosity solution of (SP). 

Then there are constants A and B depending on A„, B„ and c^ such that 

(2.11) |u(x)| < A + Bv(x) for x i  V, 

and a modulus m, depending on G in (H4), A and B in (2.11) and nL., such that 

(2.12) |u(x) - u(y)| < m(d(x,y)). 

As a simple example of the use of these results, observe that by combining the 

Convergence Theorem and Theorem 2.2 we learn, in particular, that if H satisfies (HO) - 

(H3) and un is a solution of (CP) with the initial data ifn i  UC(V), n = 1,2, ... , the <Pn 

admit a common modulus of continuity, *P_(0) is bounded and HL • f>  UB, then u  •» u OB and 

u ( UCg<v *   [0,T]) is the viscosity solution of (CP) for the initial-value $.  This result 

employs only the special case of the convergence theorem in which the modulus is uniform 

in the un and is interesting and new even in the classical finite dimensional theory. 

-14- 
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We remark that the additional assumption (H4) (or some variant) is necessary for (SP) 

in the sense that it is possible to give examples (there is one in Section 5) of 

stationary problems u + H(x,Du) = 0 in V = R in which H satisfies (HO) - (H3) but there 

are no uniformly continuous viscosity solutions. 

We next sketch the proof of the Convergence Theorem.  After this is complete we 

establish Theorems 2.2. 

Proof of the Convergence Theorem 2.1: We begin with the case (i). As a first step we 

replace u by e_tu in the usual way, the effect being that we may assume that u is a 

viscosity solution of the problem 

(2.13) u„t + u„ + H^x.t.u^Du,,) - 0, 

and the remaining assumptions are still satisfied.  We seek to estimate the difference 

un(x,t) - u^x.t) on the set v(x) < R.  To this end, let G:R + R be continuously 

differentiable and satisfy 

(2.14) G(r) » 0 if r < 0, G(1) = 1 and 0 < G'(r) < 2. 

Let R, R', a, 8 > 0, and put 

2 
(2.15) *<x,y,t) = u (x,t) - ujy.t) - [d(X,y)  + BG(v(x),~ R)). 

n       m a R 

The parameters will be chosen for various purposes later.  Roughly speaking, we will first 

produce a bound on u - u^ on v(x) < R which is independent of R and then we will use this 

to sharpen the estimates and show the convergence.  Let 

Mnm = sup{*(x,y.t): (x,y,t)€ s} where 

(2.16) 

S =   {(x,y,t)   6 VKVx[0,T] : v(x),v(y)   < R + R'   and d(x,y)<1} 

and  ("»'Vir^v'   € S be such that 

(i)      «WV   + Mnm 

(2.17) and 

(Ü)   *<vW * *(VVV' 

•15- 
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Notice that, by (2.14), 

(2.18) M^ > sup{un(x,t) - 0||(x,t)lV(x) < R, t t [0,TJ}. 

The relation (ii) implies that 

(2.19) d<vyk>2/° < WV - WV- 

Now we set 

oon(r) = sup (|un(x,t) - un(y,t)| : d(x,y) <  r, 0 < t < T}, 

(2.20) 

u(r) • lim sup u (r) for 0 < r. 
n 

n-x» 

Using (2.19) and (2.20) we have 

(2-21) dlx^y^)2 < ou^n(d(xk,yk)). 

We consider three possible situations:  Either 

(I) 

or 

(ID max( v(xk),u(yk)) • R • '. 

or 

(III)      For some n > 0, tk > n and vf^), Wyk> < R + R* - n for large k. 

By passing to a subsequence of ^(^«y^'tj^)) if necessary, we can always reduce to a case 

in which one of (I) - (III) holds.  Using the bound (2.21) and d(xk,yk) < 1 we find 

(2-22) d(xk'yk) * <a<V1))1/2 

and so 

(2-23) d(xk'yk)/a * (um(D/<»)
1/2- 

Using (2.22) in (2.21) 

(2-24) d(xk'yk)2/a * a^((°l%(1>)1/2)- 

Let us  now assume we  are  in case   (I).     In  this  event,   (2.17),   (2.22)   and 

un(x,0)  = <Pn(x),  etc.,   imply that 

<2-25) Mnm  * sup{|<pn(x)   -  i(^(x)|:v(x)   < R + R1 }  +  (^( ( ao^( 1))1/2 ). 

-16- 
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If we are in case (II), we use (2.2) to conclude that 

(2.26) M   < 2(An + Bn(R + R')) - ß lim sup G((v(x. ) - R)/R'). 
nm      u    u lc+oo 

Now either v(x^) * R + R' or ^(yK) • R + R" .  Since V(XR) > u(yK' " Klxk ~ yk^ * 

v(y>.) - Kd(xx,yK) and G" is bounded by 2, in both cases we conclude that 

(2.27) M^ < 2(A + B(R + R')) - ß(1 - 2(K/R' ) ( a«^( 1))1/2). 

In case (III) we may use the arguments of [10] to conclude that the estimates we 

arrive at below by assuming that in fact $lxir'Yv'*-)   = Mnm 
and using the equations 

satisfied by u and u are valid if we keep the parameters in the range where (2.22) 

guarantees d(x. ,y. ) remains strictly away from 1 (as we will).  Hence we simply assume 

'xk*vk'tk' is a max*-mum point of * on S.  We write (Xy'Vy'ti,)  ~   (x,y,t) to have a nicer 

appearance. Recall ([10]) that the function z(x,y,t) = un(x,t) - u^ty.t)  satisfies the 

equation 

zt + z + Hn(x,t,un(x,t)m,Dxz) - Hm(y#t,u]n(y,t),-Dvz) = 0 

on V x V x (0,T] in the viscosity sense.  Therefore we have 

(2.28) un(5,t) - V?,t) < Hm(y,t,um(y,t),2ddy/a) - 

Hn(x,€,un(x,t),2ddx/a + (ß/R*)G'((v(x) - R)/R')Dv(x)) 

where d = d(x,y), etc.  We also have 

(2.29) -Hn(x,t,un(x,t),2ddx/a + (S/R')G'((v(x) - R)/R')Dv(x)) = 

H(x,E,un(x,E),2ddx/o + C6/R*)G'((v(x) - R)/R')Dv(x)) - 

Hn(x,t,un(x,t),2ddx/a + ( ß/R')G'< < v(x) - R)/R')Dv(x)) 

- H(;,t,un(x,t),2ddx/a + (ß/R')G'((v(x - R)/R')Dv(x))+H(x,t,un(x,t),2ddx/a)+ 

- H(x,t,un(x,t),2ddx/a). 

Let us introduce the functions 

kn(R) = sup{|Hn(x,t,r,p) - H(x,t,r,p)|: v(x),|r|, |p| < R}. 

Using (2.22) - (2.24), (2.29) and (H2) we deduce that 

•17- 
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(2.30) -H^S.t.u^x.tJ^dd^a +   ( ß/R' )G' (( v(x)   -  R)/R')Dv(x))   < 

kn(A  +   (1   +  B)(R +  R')   +   2K((üJm(1)/a)1/2   +   ß/R')) 

+ aH(2Kß/R',2K((ü\n(1)/a)1/2)  + ß/R')>  - H(x,€,un(x,€),2ddx/a). 

In a  similar  way we  find that 

(2-3D Hm(y,t,<!„,(?,t),2ddy/a)   < 

km(A  +   (1   +  B)(R +  R')   +   2K((oüm(1)/a)1/2)) 

+ Hty.t.u^y.tK^ddy/a). 

Putting   (2.30)   and  (2.31)   together  with   (2.28)   and using   (H1)   and   (H3)   yields 

(2-32) un(X,€)   - um(y,E)   < 

(km +  kn)(A0  +   (1  + B0)(R + R,)   +  2K((ubl(1)/a)1/2  +   ß/R1)   + 

OjjUKß/R'^KUü^tU/a)1/2 +  ß/R1))  + 

mH(2K(uB{ (au^d) )1/2)   +   (ao^(1))1/2)) 

and  so 

(2,33) "nm  *   (km + kn)(A0  +   (1   + B0)(R + R,)   +  2K((<^(1)/a)1/2)   +   (ß/R1))   + 

+  oH(2Kß/R,,2K((wm(1)/a)1/2))   +   ß/R')) 

+ mH(2K(um((aü\n(1))1/2)  +  (a<^(1))1/2)). 

Let 

(2.34) L  =  wO)t/2. 

To estimate lim sup M  we can assume that we are in one of the cases (I) - (III) 
n,m-H»   nm 

for each n,m.  in case (I) we use (2.3), (2.20), (2.25), (2.34) and the assumed UB 

convergence of the if)    to conclude that 

(2.35) lim sup M„„ < w(a1/2L) 
n,m+~   • 

(where we should write u(a1/>2L+) on the right but won't). 

In case (II) we use (2.27) and (2.34) to conclude 

(2.36) lim sup  M   < 2(A+B(R+R')) - ß(1-2(K/R')a1/2L). 
n,m+»   nm 

Letting 

(2-37) R' - R > 1 

and assuming hereafter that a is so small that 

-18- 

u 
I 

- 

• '.•:'. ••:••• 

."' •/ •l'Ä-'-!.lvl. "• •'••••"• '•-"-••.• •-'"-• ••' •-•"-.•"»••-•••••/••• .•.-,-•••••.-•'••.•-. • .' ^-L^^LL^^JL-^L^^J^J-L****-**^^ 



""-" "" •"- --. --.--:- - -.•.v.-7^r,?.v,v".l,v;.'.v;>,.-v.-v-/ .• i »•:•!.•• • . ........—_—        ,-....-, 

(2.38) o1/2L < min{1/2,1/(4K)} 

we see that the right-hand side of (2.36) is negative if 

(2.39) ß = 4(A + 2BR) + 1, 

and we may therefore disregard case (II) when (2.37) - (2.39) hold. 

In case (III) we use (2.33) and (2.37) - (2.39) together with kn + 0 UB to conclude 

that when these conditions hold 

(2.40) lim sup M   < mH(2Kui( (ctL)
1/2) + V2) 

n,m+»   " 

+ oH(2K(4(A + 2B) + 1),2K(Lo"
1/2 + 4(A + 2B) + 1). 

Notice that the right-hand sides of (2.35) and (2.40) are independent of R, so from (2.18) 

we deduce that for all R > 0 

(2.41) sup{un(x,t) - um(x,t):v(x) < R.t d   [0,T] } < e^ + B., 

where 

(2.42) enm *0 as n,m * » 

and B. is some constant independent of R. 

The estimate (2.35) is sufficient for our purposes in case (I), but we need to use 

the above information to sharpen the bounds in cases (II), (III).  First of all, we argue 

that (2.41) holds with a constant B. independent of R in general.  This follows from the 

above by choosing R = R' and ß as in (2.39) to reduce to either case (I) or (III) so that 

(2.41) or (2.35) hold.  Since (2.35) implies (2.41), we conclude that (2.41) holds for all 

R.  Since (2.41) is independent of ß, a we are free to assume (2.41) holds and to choose 

0, a anew in further analysis. 

To analyze case   (II) further, we now use (2.41) (with R + R' in place of R) to deduce 

S<W - WV *   enm + B1 + V^V1»172' 
and so in case (II) (2.27) can be replaced by 

(2.43) Mnm < cnm  + B, + wm((au)m(1))
1'/2) - 6(1 - 2(K/R') ( au^t 1) ) 1/2). 

Hence, by (2.42), 

(2.44) Urn sup M__ < B, + L2 - ß(1 - 2(K/R')a1/2L). 
n,m*<» 

-19- 
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We see that we may fix 6 sufficiently large and independent of R, R' > 1 in such a way 

that the right-hand side of (2.44) is negative for all sufficiently small a  > 0.  With 8 

so fixed, we may disregard case (II).  The estimate (2.35) is still sufficient for our 

purposes in case (I).  In case (III) we use (2.33) with the ß just fixed by case (II)  to 

conclude that 

(2.45) lim sup  M   < oH(2KB/R',2K(La"
1/2 + ß/R')) 

n,m-*-<» 

+ mH(2K(i)(a
1/2L) + a1/2L)). 

By (2.3), the right-hand side of (2.35) can be made as small as desired by taking the 

choosing a small.  Similarly, the right-hand side of (2.45) yields 0 in the iterated limit 

R' > oo and then a  *  0. In view of (2.18) we conclude the UB convergence of the u to a 

limit u.  It follows easily from (2.3) that u is uniformly continuous in x uniformly in t. 

Since each u is uniformly continuous on bounded sets, their UB limit u also has the 

property and we conclude that u t UC (V x [0,T]). 

The proof in the case (ii) of (SP) is given in an entirely analogous way.  One still 

uses (2.17) (now independent of t) and proceeds through the same steps.  We leave it to 

the reader. 

We turn now to the proofs of Theorems 2.2. 

Proof of Theorem 2.2:  We adapt the comparison function technique of Ishii (16), [17] to 

the current case.  First of all, we bound u.  Let A, B > 0.  Using (HI) and (H2) we have 

(2.46) - H(x,t,v, (1+t)BDV) < -H(x,t,0,0) + c?H(<1 + T)B,(1 + T)B), 

for v > 0 and so we see that the function v(x,t) = (A + Bv(x))(1 + t) is a viscosity 

solution of v  + H(x,t,v,Dv) > 0 if 

(2.47) A + B\)(x) > H(x,t,0,0) + (^(1 + T)B,(1 + T)B). 

In making this claim, we are using the obvious remark that inequations in the viscosity 

sense for everywhere differentiable functions are equivalent to the corresponding 

pointwise statements. If also A + Bv(x) >  AQ + B-v(x), then v(x,0) >  u(x,0) « (p(x) and we 

conclude, using [10,Theorem 2] (the global nature of the assumption (HO) in r there is not 

necessary in °. = V) that if 
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(2.48) 

then 

B = maxIB-.B,,) and 

A = max{A0,AH} + oH((1 + T)B,(1 + T)B) 

u(x,t) < (A + Bu(x))(1 + t). 

To begin the estimate on the modulus, we use again the fact that the function 

z(x,y,t) = u(x,t) - u(y,t) on V x V x [0,T] satisfies the equation 

(2.49) zt + H(x,t,u(x,t),Dxz) - H(y,t,u(y,t),-Dyz) • 0 

in the viscosity sense.  Therefore, by (H1), on the fet 

{(x,y,t) € V x v x (0,TJ: z(x,y,t) > 0}, z is a viscosity solution of 

(2.50) zt + fl!x,y,t,u(y,t),Dxz,Dyz) < 0 

where 

(2.51) H(x,y,t,r,p,q) = H(x,t,r,p) - H(y,t,r,-q). 

We seek a function w(x,y,t) of the form 

(2.52) wU.y,t) = (EQ + FQd(x,y))e
At 

which is a viscosity solution of 

(2.53) wt + fi(x,y,t,r,Dxw,Dyw) >  0 

for all r i  R.  To this end, we make the following simplifying remark: 

Remark 2.4:  Even though d(x,y) is not differentiable with respect to x or y on the 

diagonal x = y, all of the formal calculations below with trial subsolutions and 

supersolutions involving d(x,/) can be made rigorous by first doing the calculations with 

d (x,y) = (e + d(x,y) )1'2 for e > 0, then letting e • 0 and invoking Theorem 1.4. 

Observe that d (x,y) is everywhere differentiable with respect to x and y and, for 

example, 

da(x,y) = (e + d(x,y)2)"1/2d(x,y)dx(x,y) 

(interpreted as zero on x = y) and (c + d(x,y)2)~1'2d(x,y) < 1.  For everywhere 

differentiable functions the pointwise and viscosity notions of solutions obviously 

coincide. 
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In order that (2.52) solve (2.53) we need that 

(2.54) Fnd(x,y))e
Xt >  H(y,t,r,-eXtFndv) - H(x,t,r,extF0dx) "0 ' 'o~v"'*"~   ' ",""'*' "  Oy 

for all r.  In view of (H3), it suffices to have 

X(E0 + F0d(x,y)) > e'^n^te^FQd + d). 

Because m„ is a modulus, "^(r) < HLd) + nL,(1)r, and it follows that (2.54) holds as soon 

as X is large enough.  Moreover, by (2.4), for E_, FQ > m.(1) 

w(x,y,0) = EQ + FQd(x,y) > u(x,0) - u(y,0) = ip(x) - tp(y). 

We claim that then z(x,y,t) < w(x,y,t).  This follows from the proof of [10, Theorem 1] 

(but not quite from the theorem itself). To see this, observe that for fixed 

r B"(x,y,t,r,p,q) satisfies conditions (HO) - (H3) of [10] (while H(x,T:,u(x,t) ,p,q) may 

not).  In checking that this is so, one uses 

v(x,y) = v(x) + v(y) and S((x,y),(x,y)) « (d(x,x)2 + d(y,y)2)1/2 

as the functions for conditions (C) on V x v and in (H2) - (H3) for fl.  In order 

to prove z < w we will only need to discuss z where it is nonnegative.  Then proceeding as 

in the proof of the comparison theorem and using (2.50) and (2.53) one encounters an upper 

bound roughly of the form 

R(x,y,t,r,p,q) - B(x,y,t,u(y,t),p,q) + terms which go to zero 

where (x,y,t) is chosen to maximize a certain functional.  Since r is at our disposal, we 

may use r = u(y,t) and the comparison argument succeeds.  Fixing 1 > a, y > 0, we next 

seek a supersolution w of (2.53) on the set 

S = {(x,y,t) € V x v x [0,T]: d(x,y) < 1} 

of the form 

(2.55) w = (E + F(a + d(x,y))Y)(1 + t) 

where E > 0 and F satisfies 

(2.56) F > eXT(E. + F„) 

with X, E-, F from above.  This guarantees that w(x,y,t) > u(x,t) - u(y,t) on 

d(x,y) = 1 and on t = 0, d(x,y) < 1.  A calculation reveals that (2.55) is a viscosity 

supersolution on S if 
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(2.57) E  + F(a + d(x,y))Y   > "H^d   • T>YF(<J • d)Y  + d). 

Fix 

XT 
(2.58) F  •= maxtmjjd)   +   1,eA1(Eg  + FQ)) 

so  that   (2.56)   holds  and put 

(2.59) E(Y)  - maxdi^td  + T)yF(a + r)Y + r)   - F(a + r)Y:   0  < r,   a <   1}- 

One easily shows that E(0+) = 0 (see, e.g., [9,Lemma 1]).  As above, comparison implies 

that for 0 < a, y <   1 

|u(x,t) - u(y,t)| < (E(Y) + F(a • d(x,y))Y)(1 + t) 

and sending a • 0 and taking the infimum over y on the right produces the modulus 

m(d(x,y)) on d < 1. 

In order to exhibit the local modulus in time, fix x i V with v(x) < R and E i   [0,T] 

and seek a supersolution v of 

(2.60) vt + H(x,t,v,Dv) > 0 

on {(x,t) t  V x (€,T) } of the form 

(2.61) v(x,t) = u(x,t) + A • Bd(x,x) + C(t - t) 

which further satisfies 

(2.62) v(x,t) > u(x,t) if v(x) = R + 1 and t (. [€,T] 

and 

(2.63) v(x,€) > u(x,€) for v(x) < R + 1. 

Using (2.8) we see that 

|u(x,t)| < CR if v(x) < R + 1 and t i  (0,T) 

where C  depends only on the data.  Let d(x,y) »  L if | v(x) - v(y)| > 1.  We will have 

(2.62) provided only that 

(2.64) BL > 2CR. 

Using (2.64) we see that (2.63) holds provided that 

A + Bd(x,x) > m(d(x,x)) on v(x) < R + 1. 

Since m is a modulus, 

m(d) < m(e) + (m(e)/e)d for e, d > 0, 
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SECTION 3.      REDUCTION TO THE CASE OF LIPSCHITZ CONTINUOUS HAMILTONIANS 

We will carry out the discussion below for the Cauchy and stationary problems 

simultaneously.  Appropriate distinctions between the cases will be made at those times 

when it is necessary - otherwise the discussion proceeds as if H depends on t and (SP) is 

understood to be included by allowing H to be independent of t. 

First Reduction - to Lipschitz continuous initial-values: 

The first reduction is only relevant for (CP).  Let H(x,t,r,p) satisfy (HO) - (H3) 

4 and <p d  UC(V).  We consider (CP) 

(3.1) ufc + H(x,t,r,Du) = 0, u(x,0) = ip(x). 

Then ip may be approximated by its "inf convolution" 

(3.2) <pn(x> = inf {ip(y) + n|x - y|: y i V } 

for n > 0.  If nu is a modulus for <p, i. e. 

(3.3) |<p(x) - ip(y)| < m0(|x - y|) for x,y € V, 

then one can easily demonstrate that 

(3.4) ipn(x) < cp(x) < H>n(x) + EJJ 

where 

£n = sup {mQ (r) - nr: 0 < r} 

satisfies en • 0 as n + <».  (In particular, en is finite if n > m(1), and <pn is well- 

defined in this range.) Moreover, nu is a modulus for ipn-  In all, c{^ is Lipschitz 

continuous for n large (with n as a Lipschitz constant) and converges uniformly to ip as 

n • " and has the same modulus of continuity as ip.  Using the Convergence Theorem (or the 

simpler result which bounds the difference of solutions of (CP) by the supremum of the 

difference of the initial values), we conclude that to prove existence of a solution 

u i  uca'
v * l°»T)) °r (CP), we may assume that ip is Lipschitz continuous.  We could (but 

don't need to) further approximate by putting (assuming now that ip is alreaay Lipschitz) 

ip (x) = (1 - |x)/n)*ip(x) (where r+ = max(r,0)).  The cp have a common modulus and converge 

UB to <p, so we may use the Convergence Theorem to assert that it is enough to solve (CP) 

in the case of Lipschitz continuous initial-values of bounded support. 
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H » max(min(H,n) ,-n) . 

Next we begin a sequence of approximations of the Hamiltonian. 

Second Reduction - to bounded Hamiltonians: 

For n > 0 set 

(3.5) 

Since H is uniformly continuous on bounded sets by (HO), it is bounded on bounded sets and 

therefore H • H UB.  Moreover, it is easy to see that Hn satisfies (HO) - (H3) with the 

same functions oH, n^ as H.  In the stationary case, H will satisfy (H4) and the H 's do 

also with the same F, 6.  Therefore, if we can establish the existence assertions with H 

replaced by H , the Convergence Theorem and Theorem 2.2 can be invoked to establish the 

existence assertions for H.  We have now reduced our considerations to bounded 

Hamiltonians satisfying the assumptions. 

Third Reduction - H(x,t,r,p) is also uniformly continuous in (x,r) for p pounded: 

Now let H be a bounded Hamiltonian satisfying (HO) - (H3).  For n > 0 put 

(3.6) Hn(x,t,r,p) = (1 - |x|/n)+H(x,t,rn,p) 

where r denotes r truncated at the level n as in (3.5).  Then H is supported on the 

bounded set |x| < n and is independent of r on r > n and on r < -n.  In the case of the 

Cauchy problem, one easily checks that the Hn converge UB to H and satisfy (HO) - (H3) 

uniformly in such a way that the Convergence Theorem and Theorem 2.2 may be invoked to 

reduce the existence assertions for H to the case in which H is bounded, has a bounded 

support in x and is independent of large r.  For (SP) we would need to have (H4) satisfied 

uniformly in n.  This is so, but not because H in (3.6) satisfies (H4):  Instead we use 

the uniform bound C on |Hn| provided by the bound on H and put F - 2C, G = 2C.  Thus we 

may assume hereafter that, in addition to (HO) - (H3) (and (H4) for (SP)), H(x,t,r,p) is 

now bounded and (jointly) uniformly continuous in (x,r) uniformly in t 6 [0,T] and 

bounded p. 

Fourth Reduction - H(x,t,r,p) is also independent of r: 

We remark that the reader.will be better served on an initial reading to assume H is 

independent of r from the beginning, skip this reduction and then return to it when it is 
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convenient.  To begin the reduction to the case in which H is independent of r, assume the 

conditions through the third reduction and put 

(3.7) H (x,t,r,p) - inf{H(x,t,s,p) + n|r - s|: s U }. 
n 

• If H has all the properties achieved through the third reduction, then Hn does as well and 

uniformly in n.  Moreover, H is Lipschitz continuous in r and converges to H UB.  Thus it 

is enough to solve (CP) (or (SP)) with H in order to have the solution in general.  To do 

this we will use a fixed point argument based on the solvability (yet to be established) 

for the case in which H is independent of r.  We describe the program in the case of 

(SP).  One begins by verifying that if H(x,r,p) satisfies the conditions achieved through 

the third reduction and is Lipschitz continuous in r, then for w £ UC(V) the Hamiltonian 

H(x,w(x),p) satisfies the same conditions and the solvability of (SP) with this 

Hamiltonian would be guaranteed if we had settled the case in which H is independent of 

r.  If the map w • u is then shown to have a fixed point we would be done.  A slight 

modification of this outline indeed succeeds, as we now establish. 

Let H have all the properties of H above, 

(3.8) |H(x,r,p) - H(x,s,p)| < L|r - s|, 

and w i  BUC(V).  Let w, w € OC(V) and u, ü i  UC(V) be viscosity solutions of 

u + H(x,w(x),Du) « 0 and ü + H(x,w(x),DÜ) = 0. 

Because H is bounded, so are u and ü.  Using the comparison result of [10] we easily find 

that 

|u(x) - ü(x)| <  Lsup (|w(z) - w(z)|: z (.  V }. 

Thus the map w * u is a strict contraction of BUC(V) if L < 1, and there is a fixed point 

u which solves u + H(x,u,Du) =0.  If L > 1, we proceed by choosing v i  BUC(V) and using 

the result just obtained to uniquely solve 

u + XH(x,u,Du) - nv = 0 

when XL < 1 (the Hamiltonian now being XH(x,r,p) - nv(x)).  The self - map v • u of BUC(V) 

has |n| as a Lipschitz constant and therefore has a fixed point if 0 « n < 1.  The fixed 

point u satisfies (1 - n)u + XH(x,u,Du) » 0.  Putting, for example, X = 1 - n • 1/(2L) we 
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satisfy all the conditions, the fixed point u therefore exists and it solves 

u + H(x,u,Du) • 0, so we are done. 

The Cauchy problem is treated in the analogous way, with the details being somewhat 

more complex.  We consider the map w • K(w) = solution u of the Cauchy problem 

ufc + H(x,t,w(x,t),Du) = 0, u(x,0) = <p(x) as a self-map of BUCS(V x x [0,T] ) under the 

assumptions to which we now have available on H and the assumed solvability if H is 

independent of r.  Via the arguments of [10] one shows that 

t 
|K(w)(x,t) - K(w)(x,t)| < Lj sup{|w(y,s) - w(y,s)|: y 6 V }ds 

0 

where L is a Lipschitz constant for H in r and thus concludes that K has a fixed point. 

We leave it to the reader to verify this inequality - it is not quite explicit in [10, 

Theorem 2 and following remarks].  There is another way to deal with u dependence of H as 

is remarked at the end of Section 4. 

Fifth Reduction - H is also Lipschitz continuous in (x,p): 

At the next stage, we begin with a bounded Hamiltonian H(x,t,p) (the r - dependence 

having been taken care of by the fourth reduction) which is uniformly continuous in x 

uniformly in t and bounded p and satisfies (HO) - (H3)(and (H4) for (SP)).  We then set 

(3.8) Hn(x,t,p) - inf {H(y,t,q) + (|y-x| + |p-q|)n:(y,q) £ V x V*} 

and wish to argue that it is enough to solve (CP) of (SP) with Hn in place of H.  H is 

well-defined (since H is bounded) and H is Lipschitz continuous in x and p. Moreover, H 

satisfies (HO) and there is a continuous nondecreasing function e such that 

(3.9) |Hn(x,t,p) -H(x,t,p)| < en(|p|) 

(3.10) lim e_(R) = 0 for R > 0. 
n-H» 

In particular, H *  H UB.  However, it does not follow from the assumptions that H 

satisfies (H1) - (H3) with d, v from (C), let alone uniformly in n.  It does, however, 

satisfy (H4) uniformly in n since H is bounded - see the third reduction.  We will need 

the full force of the Convergence Theorem. 
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We continue the discussion in the context of (CP).  Assume that un € UCS(V x [0,T]> 

is a viscosity solution of 

(3.11) 

unt + «n<
x't'Dun) " °' 

un(x,0) = <p(x). 

We seek to estimate un(x,t) - un(y,t) = z(x,y,t).  Using the above and (3.9) we find that 

(3.12) zt + H(x,t,Dxz) - H(y,t,-Dyz) < En(|Dxz|) + en<|Dyz|). 

We construct some supersolutions of (3.12).  First, we observe that if w as given by 

(2.52) solves (2.54), then 

«n(x»y#t) = (E0 + Fnd(x,y))e
Xt + 2en(e

WKF0)t 

XT 
is a supersolution of (3.12) since e KFn is a Lipschitz constant for w in x and y. We 

claim that z < w . The inequations solved by w and z do not satisfy the hypotheses of 

the comparison theorem in [10], but going through the proof given in [10] and regarding 

the terms involving e (.) as a perturbation one easily justifies the above claim. We 

leave the tedious verification to the interested reader. 

In particular, u (x,t) - un(y,t) is bounded independently of n on the set d(x,y) < 1, 

say by M. Next let w(x,y,t) be the supersolution E(y) + F(a + d(x,y))Y(1 + t) of (2.53) 

i 
constructed in (2.55) - (2.59) with, however, 

t 

F > maximal) + 1,mn(1),M) 

j in place of (2.58) (where m- is a modulus for <J) as in (2.4)) so that w > un(x,t) - un(y,t) 

on t = 0 and d < 1 and on d = 1.  Then, as above, we conclude that 

(3.13) un(x,t) - un(y,t) < (EU) + F(a + d(x,y))Y)(1 + T) + 2en(L(Y,a)) 

where L is a Lipschitz constant for w in x and y.  It is now clear that the condition 

(2.3) in the convergence theorem holds.  Our conclusion is that if we can solve (CP) with 

bounded Lipschitz continuous Hamiltonians, then we have proved the Existence Theorem. 

This last step is taken up in the next section.  The arguments above need only minor 

adaptations to cover the case of (SP). 
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SECTION 4: EXISTENCE IN THE LIPSCHITZ CONTINUOUS CASE 

We will now prove the existence in the Lipschitz continuous case to which the above 

considerations have reduced the proof of the Existence Theorem. 

Proposition 4.1.  (i)  Let H:V x [0,T] x v  * R satisfy (HO) and 1^, L, be constants such 

that 

(4.1) |H(x,t.p) - H(x,t,p)| < L^X - x| + L2|p - p| 

for x, x i  v, p, p (.  V and t t   [0,TJ.  Assume that ip i.  UC(V) is Lipschitz continuous with 

constant L.  Then there is a viscosity solution u of ut + H(x,t,Du) »0 on V x (0,T) 

which is Lipschitz continuous on bounded sets and satisfies 

|u(x,t) - u(x,t)| < (L.T + L)|x - x| for x, x € V, t € [0,T] 
(4.2) 

and u(x,0) = cp(x) for x € V. 

(ii)  If H in (SP) satisfies (4.1), then there is a Lipschitz continuous viscosity 

solution u of (SP) with L. as a Lipschitz constant. 

Proof:  We will mainly treat the case of (CP) and relegate (SP) to remarks.   It follows 

from (4.1) that 

(4.3) H(x,t,p) » min.(H(x,t,q) + L,|p - q|) for R > jp| 
q£BR 

and so, 

(4.4) H(x,t,p) = min# sup   (-(p,z) + (q,z) + H(x,t,q)) 
q6BR zßBL 

for R >   |p|.  So motivated,  we introduce the following Hamiltonians: 

(4.5) HM(x,t,p) =  inf# sup   (-(p,z) + (q,z) + H(x,t,q)). 
qßB    zeBL 

2 

Clearly H^fx.p) = H(x,p) for |p| < M.  We will produce a viscosity solution Uj, of 

(4.6) uMt + HM(x,t,DuM) - 0 in V x (0,T], uM(x,0) = tp(x) in V, 

such that UJJ is Lipschitz continuous in x with Lipschitz constant (L.T + L) and uu, is 

Lipschitz continuous in t uniformly on bounded sets of V.  In this event, if 

(p,a) (V  x R and (p,a) i  D+uM(x,t) U D~uM(x,t) (D* and D~ here taking values in V x R, 
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then it is assy to see that |p| < (L^T + L) and so uM is also a viscosity solution of 

U„t + HU.t.DUj,) - 0 if M > (L,T + L). 

For 0 < s < t < T, we set Q. t * (strongly measurable q:[s,t] + BM } and 

Z fc - {strongly measurable z:[s,t] + BL }.  The set of strategies on [s,t], Eg fc, is 

defined by E „ - {nonanticipating maps e:Q„ ,. + z„ ••)» where nonanticipating means that 

if Of « € flL * agree almost everywhere on an interval [a,t], s < a < t, then so do £(p) 
8ft 

and £(q). 

Let 0 < s  < t  < T.    We define U(t,s)ip  fc UC(V)  for  <p  fc UC(V)  by 

t 
(4.7) U(t,s)<p(x)-inf   sup   (/ f(X(T,t,x),T,5(q)(T),q(T))dT+(p(X(s,t,x))) 

5eHs,tq6Qs.t 8 

where the "state process"  X(t,s,x) is given by 

t 
(4.8) X(t,S,x) - x + | £(q)(T)dT  , 

S 

and 

(4.9) f(x,t,z,q) «• -(q,z) - H(x,t,q) for x fc V, z fc BL and q fc BM- 

It is easy to see that u(t,s) is in fact a self-map of UC(V) (see below). We are abusing 

notation a bit by not expressing the dependence of x on F, and q, which should be kept in 

mind.  For those without experience with differential games, let us mention that the key 

relation in what follows is that if g(X,t,z,p) = z (so that (4.8) amounts to 

X' = g(X,t,C(q),q), X(s,x) - x), then (4.5) may be written 

(4.10) HH(x,t,p) •  inf.   sup  f-(p,g(x,t,z,q)) - f(x,t,z,q)}. 

qeBM  «ea^ 

Indeed, all that follows generalizes to suitable representations of this sort. 

Lemma 4.2:  The value function IL, given by u„(x,t) • (U(t,0)<p) (x) is a viscosity solution 

of ut+ HM(x,t,Du) • 0 in V x (0,T).  Moreover, u„ is Lipschitz continuous on bounded sets 

and is Lipschitz continuous in x with constant (L..T + L).  Finally, uM(x,0) • (j)(x). 
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Proof;  It will simplify the notation if we agree to write u in place of VL.  hereafter. 

With £ and q fixed and x, x € V, 

X(t,s,x) - X(t,S,x) - X - X. 

Moreover, from (4.1) and (4.9) we have |f(x,t,z,q) - f(x,t,z,q)| -. L.|x - x|.  It then 

follows immediately from the definitions and assumptions that 

(4.11) |u(x,t) - u(5E,t)| < (L,T + L)|x - x| 

for x, x £  V and t € [0,T], and the asserted Lipschitz continuity in x holds*  Moreover, u 

is easily seen to be Lipschitz continuous in t uniformly for bounded x. 

To prove that u is a viscosity solution of ut + !L,(x,t,Du) = 0 m will use the 

optimality conditions of the dynamic programming principle.  In this situation, this just 

amounts to the statement that U is an evolution operator.  That is, if 0 < r < 8 < t < T, 

then 

(4.12) U(t,r) - U(t,s)U(s,r), 

where juxtapositon denotes composition of mappings.  This relation may be verified in the 

usual way - see [14] for the finite dimensional case.  In order to verify that u is a 

viscosity supersolution of ufc + H(x,t,u,Du) = 0 we assume the contrary and reach a 

contradiction.  Assume that (p,a) (V  x R, (y,b) € V x (0,T) and 

(4.13) u(x,t) < u(y,b) + (p,x - y) + a(t - b) + o(|x - y| + |b - t|), 

i.e., (p,a) lies in the superdifferential of u at (y,b).  Assume, moreover, that 

(4.14) 4Y - a + H(y,b,p) > 0, 

where y  is defined by (4.14).  Using (4.5) we conclude that 

(4.15) a + sup  ( -(p,z) + (q,z) + H(y,b,q)) > 4y for q € B*. 
L2 

Using (4.15) and a partition of unity argument, one easily concludes the existence of a 

continuous function £:B„ + B.  such that 

(4.16) a - (p,5(q))) + (q,5(q)) + H(y,b,q) > 3f for q t B^. 

Next choose an arbitrary q 6 o . and s < b.  From the continuity properties of H and 

(4.16), we deduce that if s < t < b and b - s is small enough, then 
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(4.17) a - (p,£(q(t))) + (q(t),£<q(t))) + H(X(t,s,y),t,q(t)) > 2y, 

where X is given by (4.8) and 5(q)(t) = C(q(t)) denotes the strategy associated with the 

mapping of B., into B,  discussed above.  Integration of (4.17) with respect to t over the 

range s < t < b and use of the relation 
b 

(4.18) / (p,£(q(T)))dT = (p,X(b,s,y) - y) 
s 

yields 

a(b - s) + (p,y - X(b,s,y>) + 

(4.19) b 

j (H(X(t,s,y),t,q(t))+(q(t),S(q(t))))dt  >2y(b-s). 
s 

Use of (4.13) in conjunction with (4.19) and obvious considerations of continuity yield 

b 
- u(X(b,s,y),s) + u(y,b) +  J (H(X(t,s,y),t,q(t)) + (q(t),£(q(t))))dt 

s 

> y(b - s) 

for b - s sufficiently small.  Hence, using (4.12), 

u(y,b) > 

b 
Inf   sup   (u(X(b,s,y),s) - j (H(X(t,s,y),t,£(q)<t)) + (q(t),5(q)(t)))dt ) 

s ,b  s,b 

= (U(b,s)u(.,s))(y) = (U(b,s)U<s,0)ip)(y) • (U(b,0)<p) (y) = u(y,b), 

a contradiction.  Thus u is a subsolution. 

The proof that u is a supersolution is similar.  Assume not, so that there is a 

(y,b) d  V x (0,T] and a (p,a) € V  x R such that both 

(4.20) u(x,t) > u(y,b) + (p,x - y) + a(t - b) + o(|x - y| + |t - b| ) 

and there is a y  > 0 and a q i  B„ such that 

(4.21) a + H(y,b,q) + (q,£.) - <p,U *  -3K for all £ i  BL . 

Proceeding as above, we find that for every strategy 5 

(4.22) a + H(X(t,s,y),t,q) + (q,f,(q)) - (p,S(q>> < "2y, 

where q denotes the corresponding constant element of Q, provided only that s < t < b and 

b - s is sufficiently small.  Integration of (4.22) over s < t < b, use of (4.8), (4.20) 
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and then (4.12) yields 

u(y,b) < 

b _  _ 
u(X(t,s,y),s) -  j (H(X(t,s.y),t,q) + (q.5(q)(t)))dt - y 

8 

b 
< inf   sup   (u(X(b,s,y),s) - / (H(X(t,8,y),t,q(t)) + (q(t),£(q<t)))dt) 

ee=  qec s 
s,b  s,b 

=- (U(b,8)u(.,s))(y) - (U(b,s)U(s,0)<p)(y) - u(y,b), 

a contradiction.  Thus u is a viscosity solution and has all the claimed properties in the 

case of (CP). 

In the case of (SP), the analogous considerations succeed.  One still has (4.4) 

(independent of t) and defines HH as in (4.5).  The value function 

m 

u(x) - inf sup / e"Tf(X(T,x),t(q)(T),q(T))dT 
58= qSQ  0 

now obeys the dynamic programming principle in the form 

t 
u(x) - inf sup ( / e"Tf(X(T,x),5(q(T)),q(T))dT • u(X(t,x))e-t)» 

ees qeQ   0 

where X(t,x) - X(t,0,x), Q is the set of controls on I0,°°) and H is the set of strategies 

on [0,o>) (where r, is a strategy if whenever controls p and q agree on an interval [0,t) 

then so do £(q) and £(p)).  Then one (for example) writes the statement that u is not a 

viscosity subsolution, multiplies this by e_t, integrates over a small interval 0 < t < b 

and reaches a contradiction as above. 

We remark here about the case in which H(x,t,r,p) depends on r.  If H is Lipschitz in 

(x,r,p) and nondecreasing in r then 

(4.23) 

H(x,t,r,p)  * inf { H(x,t.s,q) + L(r - s)   + L|p - q|: s e R, q G V } 

inf  (    sup      (H(x,t,s,q) • 9(t - s) - (z,p - q)} 
(s.q)eRXV  (6,8)6(0,L] »B 
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One can use this formula to obtain a solution for (CF) and (SP) via differential games as 

was done above in the r - independent case, but the complexity becomes unpleasant. 

We conclude this section with a variety of comments.  All of the above presentation 

holds in a general Banach space V - no geometrical assumptions were invoked and conditions 

(C) played no role.  In this generality, however, the value of the results is not clear. 

No uniqueness results are available.  If one wants to pass beyond the context of RN 

spaces, it seems likely that the notion of strict viscosity solutions ([10, Appendix]) or 

a variant is appropriate rather than the notion used here.  Indeed, in the language of 

[10], D+u(x) and D~u(x) may be empty for all x, hence the simple notion becomes useless. 

Moreover, the uniqueness of the solutions constructed above even when V is RN and (C) 

holds does not follow at once, since (H3) may fail.  For example, for H(x,p)  « |p|, (H3) 

is equivalent to the existence of a constant C such that (d^+dyl <c|x-y| for x,y (.  V, 

and this is not implied by the assumptions.  However, one can replace d by 

<5(x,y) - d(x - y,0), and 3 does satisfy this condition.  Using the uniform approximability 

of uniformly continuous H(x,p) by Lipschitz continuous functions, one can extend existence 

to the case of uniformly continuous Hamiltonians. 
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SECTION 5; VARIANTS, EXAMPLES AND REMARKS 

In this section we attempt to provide some feeling for the assumptions used in this 

paper and [10].  Let us begin by reviewing what various assumptions mean in the event that 

V is a real Hilbert space, d(x,y) = |x - y| and 

(5.1) H(x,p) = (b(x),p) - f(x) 

is an affine Hamiltonian.  Here ( , ) denotes the inner-product on V and we have 

identified V and V .  Note that in this case 

dx(x,y) = - dyU.y) - |x - y|"1(x - y). 

With this choice of d (H3) is equivalent to requiring that f € UC(V) and that there be a 

c >  0 such that 

(5.2) (b(x) - b(y),x - y) > - c|x - y|2 for x, y t V; 

that is, x • b(x) + ex is monotone.  The condition (HI) is automatically satisfied since H 

is independent of u, and (HO) is equivalent to the uniform continuity of b on bounded 

sets.  Finally, (H2) is equivalent to the existence ot a C< t R such that 

(5.3) (b(x).Dv(x)) >  -c, for x € V 

where v is a function satisfying 11.4). 

It is easy to see that some condition like (5.3) is necessary for uniqueness even in 

the linear case.  Indeed, set b(x) = -Xx for some X > 0 and f = 0.  Clearly (5.2) holds 

with c = -A, the other assumptions hold as well, and (SP) becomes 

(5.4) -Mx,Du) + u = 0 in V. 

If X  > 1, (5.4) has the distinct uniformly continuous viscosity solutions u = 0 and 

u = |«|V\ 

We turn to the condition (H4) and its role in the study of (SP).  First, let us give 

two examples of functions F.  If we take 

(5.5) F(a,b) = C(1 + b)   *(a) 

where C > 0 and b * *(b) is continuous and nondecreasing, then we may choose 

G(r) = C(1 + r) + *(C). 

Observe that this choice of F is appropriate for the situation in which V is a Hilbert 
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space, d(x,y) = |x - y| and H(x,p) i  UC(V < BR) for all R > 0; indeed, we tnen have 

H(y,0) - H(x,0) < C(1 + |x - y|) and |H(x,p) - H(x,0)| < *(|p|) for x,y e V 

for a suitable constant C and a nondecreasing function *, and so 

H(y,-Ad ) - H(x,Xd ) < H(y,-\d ) - H(y.O) + H(y,0) - H(x,0) + 
y x y 

H(x,0) - H(x,Adx) < C(1 + |x - y|) + 2*(KX). 

A second F of interest for which (H4) is verifiable is 

(5.6) F(a,b) = cQab + c^
01 + c2 for a, b > 0 

where a i  ]0,1), and cn, c, > 0.  Then (H4) holds if cna < 1, for we can then use 

G(r) = Cj(1 - CQOO  ra + c_.  In fact, the curious relation cna < 1, which was used 

without further explanation in Ishii [17] (a somewhat related condition also occurs in 

[8]) is necessary here, as the next example shows.  In this example, (HO) - (H3) hold, and 

the estimate of (H4) holds with F(X,d) = Ad + d, but cQa = 1 in this case and there are no 

uniformly continuous solutions of (SP). 

Let V = R, H(x,p) = b(x)p - |x| and choose b as follows: set x =(n+1)(n+2) for 

integral n > 0 and 

(5.7) 
b(x)   =   0   if   x   <  0,   b(x)   =   x  -   x     if   xn   < x   <  xn  +   (n  +   1), 

b(x)   =  x n+J xifx    +n+1<x<x n + 1 • 

Clearly (HO) - (H3) hold and the first inequality of (H4) holds with F(X,d) = Xd + d. 

Here c.a = 1 and we can show that (SP) does not have a uniformly continuous solution. 

Indeed, if such a solution exists, it is easy to show that it is given by 

00 

u(x) = J |x(t,x)|e_tdt 
0 

where X(t,x) is the solution of the Cauchy problem X = b(X), X(0) = x.  Obviously 

u(xn) = 0 while for h ( (0,1) 

s _t 
u(x  + h) >   I  X(t,x  + h)e  dt 

0 
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As is seen from this sketch of proof, it is not (5.8) which is crucial to the 

existence of bounded solutions, but rather the ability to find suitable bounded sub- and 

supersolutions» 

To illustrate what is gained by replacing (C) by (C)' we consider again the case of 

the linear Hamiltonian given by (5.1) in a real Hilbert space V.  Let b(x) be uniformly 

continuous on bounded sets and satisfy (5.2).  As the example of nonuniqueness shows, we 

cannot deduce from these assumptions that (5.3) holds for some v satisfying (1.4). 

However, v(x) - (1/2)log(1 + |x|2) satisfies (C)' and (5.2) with y - 0 implies 

(b(x),Dv(x)) - (b(x),x/(1+|x|2)) > -c + (b(0),x)/(1 + |x|2) 

and the right-hand side of this expression is clearly bounded.  We conclude that BUC 

solutions of u + (b(x),Du) - f(x) - 0 are unique whenever b satisfies the above 

conditions.  This assertion does not contradict the nonuniqueness of solutions of (5.4) 

exhibited above, since the second solution was unbounded. 

We want to examine this situation further.  We next present a class of examples that 

indicate that even in the case of BUC solutions some assumption like (H2)' is needed - 

indeed, the example shows that this condition is rather sharp.  Consider the equation 

(5.9) -g(x)|u'|a + u = 0 

where 0 < a < 1 and 

(5.10) g i  UC(R) is odd, nondecreasing, g(s) > 0 for s >0 

and 

(5.11) K-h /a ds = •». 

0 g(s) 

The uniqueness of BUC(R) solutions of (5.9) is determined by whether or not 

(5.12) /   -L Va ds 
1 g(s) 

is finite.  Indeed, if I is finite one easily checks that the odd function given by 

(5.13) u(x)   -   ( 
1  -  a /-A a '       ,   . 1/a x g(s) 

•   l)"a/(1"a)   for x >  0 
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is a BUC solution together with u = 0, so BUC solutions are nonunique.  For example, if 

g(x) = x and o • 1/2, then u(x) • x/(1 + |x|) and u is even Lipschitz continuous-  It 

follows that if I is finite then there is no v satisfying (C)' such that (H2) holds for 

H(x,p) = -g(x)|p|a.  However, if I is infinite, then 

l>l  . 
v(x) = /   ! — ds on |x| > 1 

1  g(s)1/a 

satisfies (C)' and (H2) holds.  In this class of examples, (H2)' is necessary and 

sufficient for uniqueness in BUC. 

We continue dissecting the role of (H2). As mentioned above, it played a dual role 

in first obtaining bounds on d < 1 and then again in getting refined estimates in d < 1. 

We can split the assumption into pieces designed to handle these tasks separately. To 

obtain the preliminary bounds it is enough to know that there is a function v satisfying 

(C) (in particular, (1.4)) such that 

(H2)    For each R > 0 there is a constant c such that a K 

H(x,t,r,p) - H(x,t,r,p + XDv) < CR 

for lx,t,r) 6 V x [0,T] x R, |p| <.  R and 0 < X < R 

holds.  In order to continue to the second stage, one only needs that there is a p which 

satisfies the requirements of (c)' (in particular, (1.4)' in place of (1.4)) in place of v 

such that 

(H2).    There is a local modulus o„ such that 

H(x,t,r,p) - H(x,t,r,p + XDu(x)) < o^t X, |r>| > 

whenever 0 < A < 1, (x,r,t,p) £ il  x [0,T] x R x v . 

Then the existence and uniqueness results remain valid with (H2) replaced by (H2)  and 

(H2). .  Examples show that this is an interesting generality.  Indeed, if H is bounded on 

V x [0,T] x R x BR for each R, then (H2)a is automatically satisfied.  Hence 

H(x,p) = max((min(-(x,p),|p|),-|p|) satisfies (H2)fl.  It also satisfies (H2)b with 

n(x) • logd + |x| ) when V is Hilbert.  Another example, with the same u, is given by 

H(x,p) = cos((x,p)).  Neither satisfy (H2). 
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theory of viscosity solutions Hamilton-Jacobi equations in infinite dimensional 
spaces.  The first paper introduced a notion of viscosity solution appropriate 
for the study of Hamilton-Jacobi equations in spaces with the so-called Radon- 
Nikodym property and obtained uniqueness theorems under assumptions paralleling 
the finite dimensional theory.  The main results of the current paper concern 
existence of solutions of stationary and time-dependent Hamilton-Jacobi 
equations.  In order to establish these results it is necessary to overcome the 
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20.  ABSTRACT - cont'd. 

difficulties associated with the fact that bounded sets are not precompact 
in infinite dimensions and this is done by sharp constructive estimates 
coupled with the use of differential games to solve regularized problems. 

Interest in this subject arises on the abstract side from the desire to 
contribute to the theory of partial differential equations in infinite 
dimensional spaces to treat natural questions raised by the finite dimensional 
theory.  Interest also arises from potential applications to the theory of 
control of partial differential equations.  However, the results herein 
do not apply directly to problems of the form arising in the control of 
partial differential equations, a question which will be treated in the next 
paper of the series. 
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